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Craters produced by explosions in a granular medium
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We report on an experimental investigation of craters generated by explosions at the surface of a model granular
bed. Following the initial blast, a pressure wave propagates through the bed, producing high-speed ejecta of grains
and ultimately a crater. We analyzed the crater morphology in the context of large-scale explosions and other
cratering processes. The process was analyzed in the context of large-scale explosions, and the crater morphology
was compared with those resulting from other cratering processes in the same energy range. From this comparison,
we deduce that craters formed through different mechanisms can exhibit fine surface features depending on their
origin, at least at the laboratory scale. Moreover, unlike laboratory-scale craters produced by the impact of dense
spheres, the diameter and depth do not follow a 1/4-power-law scaling with energy, rather the exponent observed
herein is approximately 0.30, as has also been found in large-scale events. Regarding the ejecta curtain of grains,
its expansion obeys the same time dependence followed by shock waves produced by underground explosions.
Finally, from experiments in a two-dimensional system, the early cavity growth is analyzed and compared to a

recent study on explosions at the surface of water.

DOI: 10.1103/PhysRevE.96.032904

Crater formation is a fundamentally important topic in
geophysics and planetary science motivated by the observation
of craters on Earth and some of our nearby neighbors (i.e., our
moon and Mars). Today, we know that most of the craters were
produced by the impact of meteorites.

One consistent line of inquiry has been to derive the energy
involved in the formation of a given crater [1-4], which has
led to many inverse problem studies, ranging from laboratory
scale experiments with steel spheres where D ~ O(10~!) m
and Ey ~ O(1073) J up to meteor craters with D ~ O(10%) m
and Ey = 0(10'%) J. It has been proposed that a scaling law
relating crater diameter to the energy of the impact, D ~ Eé/ .,
is valid in this energy range, however this upper energy limit
is based only on a single, loosely constrained data point and
has not yet been validated. In fact, high-velocity studies have
revealed scaling laws with significantly lower exponents for
the crater size in terms of the impact energy [5—7], therefore
casting doubt on the universality of a single exponent. For
typical impact experiments, the ejecta velocities (e.g., [§-10]),
crater diameter (e.g., [2,11]), and penetration depth of the
projectile (e.g., [12—15]) are the characteristic measurements
taken. For authoritative details on this topic, the reader is
referred to Refs. [7,16-20].

With the exception of recent studies of cavity collapse
[21,22], other cratering studies generally pertain to near-
surface explosions [23-26]. In this phenomenon, the point-
source release of energy excavates material to form a crater,
and dimensional analysis predicts linear crater dimensions
to scale as W'/3, where W is the weight (or energy) of the
explosive charge. This scaling failed across a broad range
of data due to factors such as eject fallback and material
heterogeneity [27], and an empirically derived constant of 0.3
has been proposed [23]. In fact, depending on the variables
included in the dimensional analysis, all scaling laws are
shown to be bounded by cube root and quarter root rules
[23,28].

So far, most craters generated by explosions are studied
at a large energy scale (> 10° J) with only a handful of
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reports at the laboratory scale (see, e.g., [29-31]). Here we
report on small explosions (~10? J) at the surface of a model
three-dimensional granular bed, and also in a two-dimensional
cell that allows us to observe and analyze the cavity growth
dynamics. The best-fit relation between crater dimensions and
energy is determined and compared with large-scale results.
In particular, we discuss some morphological features that
distinguish craters created by explosions from craters with
other origins.

I. EXPERIMENTAL SETUP

A granular bed was prepared in a cylindrical container
(height 40 cm and diameter 60 cm), comprised of 180 um
Oklahoma silica sand particles (po; = 2.6 g/cm?®). The bed is
prepared in a similar fashion to that described in [22] to yield
a consistent initial solids packing fraction of ¢ =~ 0.59 £ 0.01.
A small explosive device is then placed directly in the center
of the bed and buried so that the top of the device is at the
same level of the granular surface. The device itself is a 1
cm?® hollow metallic cylinder of 10 mm height and with a 3
mm diameter hole at the top used to fit the fuse that ignites
explosive powder confined within the metallic chamber. The
powder was obtained from firecrackers and measured out in
specified masses ranging from 0.1 to 0.6 g on a balance with
a tolerance of +0.005 g. The bottom of the chamber (facing
into the granular bed) is open, but covered with paper layers
so that the initial blast is directed vertically down into the
bed. The approximate energy released by the deflagration of
the powder, for which the principal constituent is potassium
nitrate (KNO3), is 3 MJ/kg, in which case we can specify
the approximate energy Ey as 300-1800 J. Only a reduced
fraction of this energy is used to produce the resulting crater,
while the rest is mainly dissipated as heat. The events were
captured with a high-speed video camera (Photron Fastcam
Mini UX100) at frame rates up to 20 000 fps, while the crater
shapes and dimensions were captured by laser profilometry
after the explosion. The underground cavity growth dynamics
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FIG. 1. Explosions in granular media: Snapshots taken from high-speed video sequences of (a) an explosion in a 3D bed setup with
m = 0.4 g, (b) an explosion in a quasi-two-dimensional (2D) cell with m = 0.2 g, and (c) early cavity growth in the 2D cell form = 0.2 g,

recorded at 20 000 fps. See also the supplemental videos [32].

following the explosion was visualized using a pseudo-two-
dimensional setup fabricated from acrylic plates (35 x 50 cm?)
separated by w = 1.5 cm spacers. Only the smaller explosives
were used in this system to avoid container damage, and the
walls were strengthened with an aluminum frame to inhibit
cell expansion during the explosion.

II. CRATER MORPHOLOGY

Illustrative image sequences of three-dimensional (3D)
and 2D experiments are shown in Figs. 1(a) and 1(b),
respectively. The ignition corresponds to ¢ = 0. The explosion
first produces an underground cavity, then the material is
expelled outside generating an ejecta curtain, and finally
a crater forms at the surface. Figure 1(c) shows that the
explosion itself lasts less than 1 ms. During this short time, a
shock wave generated by the explosion accelerates the mass
of sand violently and gives rise to a cavity and a raised rim
below and above the surface, respectively. High-speed videos
of the cratering process in 3D and 2D systems can be found
in the supplementary information [32].

Figure 2(a) shows a typical crater produced by an explosion
and an example of the raw image for the laser profilometry.
Analysis of these images yields discrete data points, which we
first fit to an equation before performing a solid of revolution
to obtain the crater volume. The best fit to the data is given by
the equation of a hyperbola:

zx)=H —a+ (a2 + x? tan? 9)1/2,

where H is the maximum crater depth measured at x =0, a
is a fitting parameter with O(1 cm), and 6 is the acute angle
between the lateral wall asymptotes and the horizontal plane.
The results of this fitting procedure are shown in Fig. 2(b)
(solid lines) in the x-z plane for different values of explosive
mass, m. In nearly all cases, the profiles are almost conical
with slopes 8 ~ 16°-20°, less than the angle of repose of this
granular material, 9z = 32.5°.

From these profiles, we can also measure the crater diameter
D given by the distance between the lateral walls at the initial

surface level, and we calculate the mean crater aspect ratio
o = D/H = 7.2 + 0.4 [Fig. 2(c)]. With reference to Fig. 2(d),
we note that the raised rim height H,;,, increases almost linearly
with the energy of the explosion. The only other cratering
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FIG. 2. (a) Crater produced by an explosive with m = 0.4 g of
gunpowder, and its surface profile obtained with a laser line. (b)
Crater profiles produced by different explosive masses m (solid lines).
Craters have raised rims and a hyperbolic shape approaching almost
a conical depression (dashed lines). (c) The crater aspect ratio o =
D/H is nearly independent of m, although it decreases slightly for
larger values of m. (d) Rim height H,;, measured from z =0 as a
function of m.
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TABLE I. Summary of the morphological properties of craters produced by different mechanisms at laboratory scale, according to some
experimental investigations and the results reported in this research (a blank space means “not quantified”).

Origin Ref. Profile/technique Scaling Him o=D/H Remarks
D o« E'*
Impact (solid [2] Bowl-shaped H o EV4 ~8.4 Craters with central uplifts and terraces at
projectiles) (observed with the higher energy « increase at higher energies.
naked eye)
D« EV*
[3] Hyperboloid (laser H o EVS Independent ~6-15 Hyim is fixed by the projectile radius. o is
prof. and fit) of E independent of E and fixed by the ball size.
[14] D x E'4 D and H are separate lengths set by separate
physics. H is related to the stopping force on
the ball.
[39] With central uplifts Increases Crater shape and displaced material are
(laser profilometry) with ¢ sensitive to ¢. Large central peaks and deeper
craters at small ¢.
D x EV*
Impact [11] Bowl-shaped H # const o« E4 Projectiles are pulverized by the impact. H
(granular (cross-sectional fixed by ball cohesive strength and target
projectiles) view) properties. Craters with central uplift appear
when E is increased.
Subsidence [21] Hyperboloid (laser No raised ~5+2 Collapse of small cavities produced by
profilometry) rim removing a cylinder from a bed of beads. No
corona, central uplift.
D oc V13
Collapse of [22] Spherical H oo VI3 No raised ~7+1 D and H are determined by the initial cavity
pressurized bowl-shaped rim volume V. Large cavities produce jets and
cavities (shadow projection) crater with central uplift The corona collapses
inside the cavity.
Explosions [29] Bowl-shaped at ~4 but it Impact crater simulated with an explosion at a
s = 0 to conical at increases certain depth, proved only for 0.150 g of
s~ 1lcm with s. PETN (870 J) placed at different depths s.
(profilometry)
[30] Bowl-to-conical Performed in 3D and quarter-space tests
(cross sectional container. Morphological features are only
view). described, and approximated illustrations
based on videos are reported.
[31] Bowl-shaped V, D, H, ejecta of grains, material stress, and
(cross-sectional strain were measured for different charges.
view) Experiments performed in 3D and
quarter-space tanks.
See text Hyperboloid nearly D « E 030 x E ~7 Corona spreads outside the cavity and central

conical (laser
profilometry and
fit)

uplifts never appear. Hy;,, grows linearly with
E. Experiments in 3D and 2D systems.
Analysis of ejecta curtain and cavity growth
dynamics.

process leading to hyperbolic craters with raised rims is for the
impact of solid projectiles [2,3], but in such cases Hp, is found
to be independent of the impact energy. Craters produced by
projectiles that fragment on impact are nearly parabolic [11],
as are meteor craters, while craters produced by the collapse
of underground cavities have similar aspect ratios but with a
dome-shaped geometry and a flat rim [22] for pressurized
cavities, and they are hyperbolic but also without raised
rims for nonpressurized cavities [21]. In pioneering reports
of laboratory-scale explosions, it is mentioned that conical
craters are produced in dry sand, whereas more complex
morphologies, including central mounds, concentric rings, and

terraces, occurred in cemented sand [30,31]. A summary of the
morphology of craters produced by different mechanisms in
small-scale experiments is presented in Table I. Note that a
quantitative analysis of some of the features and the scaling
laws for explosion cratering at laboratory scale were missing
before the present research.

III. SCALING LAWS

From dimensional analysis (e.g., [23-26]), one expects the
linear dimensions (depth and diameter) to scale as H,D ~

Eé/S, so that V ~ D2H ~ Ey o m. To test this hypothesis,
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FIG. 3. (a) Crater volume V as a function of mass m. The linear
fit predicts my ~ 0.076 g. (b) Crater diameter D vs m. The log-log
plot (inset) reveals a power-law D = A(m — m,,)*.

we used the surface profile to calculate the crater volume V
from the equation of a hyperboloid given by

6

4H?

1/30> 1 \
tan? 6 TH

Indeed, Fig. 3(a) shows that V follows a linear relation
with m (note the log,,-log,, inset indicates an exponent
of 0.97 £0.04). In particular, the best linear fit intercepts
the x axis at m = mo = 0.076 = 0.02 g, which corresponds
to V =0 and physically represents the minimum mass to
break the combustion chamber. To confirm this, we performed
several experiments with m = 0.050 g, and in most occasions
the powder burned inside the chamber without generating an
explosion.

Figure 3(b) shows the crater diameter D as a function of
the explosive mass m. Following from the scaling analysis,
the data (black points) could be reasonably well described by
a 1/3-power law (red line), but the best fit, as determined
by the correlation coefficient, is a 0.3-power law (green
line) of the form D = A(m — mg)?, where mo = 0.076 g and
p = 0.305 £ 0.016. This smaller exponent was the subject
of detailed analysis by [23] and empirical scaling [27]
across different scales. The fact that the same power-law
exponents apply here at the laboratory scale is an indication
of the universality of scaling of explosive crater formation,
at least for surface explosions. Moreover, since the material
is systematically prepared before the explosion, the deviation
from the 1/3 rule is not related to medium inhomogeneities, as
was previously assumed [27].

IV. EJECTA CURTAIN

Let us now describe some of the dynamical features during
the crater formation. Following the explosion, the material
around the ignition point is ejected radially forming a corona
that expands until collapsing outside the cavity. Figure 4(a)
shows the corona diameter measured at surface level, D, as
a function of time for different values of m. The log,,-log, plot
in Fig. 4(b) indicates a power-law dependence given by Do,
(m — myg)'3t%3° The same dependence (o< t%-3°) was found in
underground explosions [33] by monitoring the expansion of
the shock wave. This concordance shows that the initial curtain
expansion is a good proxy for the cavity growth and estimating
the explosive energy.
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FIG. 4. (a) Corona growth in 3D explosions for different values of
m. (b) D.,; measured at the surface level as a function of time follows a
growth power law Do, = At%%, with A = (56.1 & 0.5)(m — my)'/?
determined in the inset.

V. EARLY CAVITY GROWTH

The quasi-2D system was used to visualize the underground
cavity expansion following the explosion. The cavity radii,
R..v, as a function of ¢ derived from the videos for different
values of m are shown in the inset of Fig. 5(a) (color points).
In the main plot, the case m = 0.2 g is used as an example
to compare the experiment with different models discussed
below.

In Ref. [34], the early cavity growth produced by an
explosion at the water surface was described with a potential
flow model simplifying to the expression for the radius
R3R?2 = Ey/p, which easily yields the result R(¢) o 25 (here
we used indistinctly R.,y = R). This 2/5 scaling law was
established by Taylor for shock wave propagation following a
nuclear blast [35], and it was also found during excitation of
hard spheres by examining the growth rate of particle collisions
in 2D and half-space simulations [36]. Nevertheless, the model
considers that the overpressure generated by the explosion
relaxes to ambient on a millisecond time scale, shorter than the
expansion time of the cavity [t ~ O(10~" s)]. Here we modify
the potential flow model by considering the pressure drop from
an initial value, P;, to ambient, Py, for an isothermal expansion
of the quasi-2D cavity during the observed time t &~ O (1073 s)
and adding a viscous term to include the dissipative nature
of the granular medium [37,38]. Under these conditions, the
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FIG. 5. (a) Inset: R, Vs t in 2D explosions for different masses.
Main plot: the case m = 0.2 g (solid points) is compared with three
models: Reyy = Rumax(1 — e77/7) (solid lines), isothermal model (red
dashed line), and power-law model R(¢) = At>/> (green dotted line).
(b) Reay/Rmax Vs t/t. The heuristic model describes fairly well the
growth process with the average value = 1.127 ms. The inset shows
that Ry o (m — mg)Y/2.
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differential equation for the cavity dynamics is

I R P(®)’-p

RR+ DR +4p— = . ,
where u is a free parameter, P; = 0(10° Pa), and R; =
0(10™* m). As shown in Fig. 5(a), the numerical solution
of the above equation (dashed line) approaches better the
experimental measurements than R(¢) o ¢2/3 (dotted line), but
a considerable discrepancy still exists. The best data fit (blue

line) is given by the heuristic equation:
R(1) = Ruax(1 = €''")

with t a characteristic time. This equation is also plotted in the
inset of Fig. 5(a) (color lines) for different values of m, with
excellent agreement in all cases.

If we consider that the mass of grains displaced by the
cavity formation is proportional to the energy released during
the explosion Ej, then M.,y = pm ernaxw « Ey, where p =
2.66 £ 0.05 g/cm? is the density of sand. Since the explosion
is radially symmetric, inertial effects are considerably greater
than gravitational effects, and M.,y is in turn proportional to
the effective mass of the explosive. Then, one finds Ry =
k[(m — mg)/wpm]'/?, where k is a dimensionless constant
of proportionality. Accordingly, the log,,-log,, plot shown
in the inset of Fig. 5(b) shows that Rp.x is well fitted by
a power law of (m — mg)'/? with k¥ = 236.8 £ 18.3. Using
Riax to normalize R,y, it is found that the cavity growth
collapses according to Reay/Rmax = (1.08 & 0.01)(1 — e77/7),
as shown in Fig. 5(b), where v = 1.127 £ 0.037 ms is the
average of the characteristic times of the individual fits shown
in the inset of Fig. 5(a). Therefore, the cavity growth velocity
dR/dt = (Rpax/T)e"/" gives initial maximum velocities of
0(10%) m/s.

It is interesting to note that explosions at the free surface of
water [34] exhibited the same scaling exponent for maximum
cavity size versus energy, i.e., Rpmax ~ E(l)/ 4, as for impact
cratering. However, in the granular bed, we found Ry.x
(m —m,)"3° ~ EJ? as found in large-scale events. In contrast,

PHYSICAL REVIEW E 96, 032904 (2017)

the scaling obtained in the quasi-2D system was Rpax X Eé/ 2,

which is related to the confinement effects due to the lateral
walls.

VI. CONCLUDING REMARKS

Hyperbolic craters with raised rims result from surface
level explosion in a granular bed. Our results here are the
first laboratory-scale craters from surface explosions where
the mass has been systematically varied. Our observations
indicate that the established 0.3 power-law scalings for large
craters hold across many orders of magnitude of E(, however a
broader parameter range needs to be considered at the labora-
tory scale to rule out the 1/3-scaling law from dimensional
analysis. This caveat notwithstanding, crater formation by
explosions exhibits universality. By comparing the geometry
of craters by diverse mechanisms and the finer features such
as rim energy dependence, we postulate that profilometry
may help to classify craters observed on earth, lunar, and
planetary surfaces, although caution should be used because
impact craters can be very similar to explosion craters under
certain conditions. Finally, we note that for our experiments
we considered a relatively loose packing (¢ ~ 0.59) and
quasispherical grains. Performing a systematic variation of
packing and grain shape could provide a robust test of the
crater volume scaling found here. Also, testing established
scaling laws (t%/°) for the growth rate of shock waves and
particle-collision zones in different configurations (experiment
versus simulation, quarter-space versus half-space, etc.) would
be of interest.

ACKNOWLEDGMENTS

We thank Brandon Weeks and S. Hidalgo-Caballero for
helpful discussions on the explosives and the isothermal
model, respectively. FP.V. and A.T. thank CONACYT Mexico
Project No. 242085 of the Sectoral Research Fund for
Education, and VIEP-Project 2017. J.M. thanks TTU for
financial support.

[1] H. J. Melosh, Impact Cratering: A Geologic Process (Oxford
University Press, New York, 1989).

[2] A. M. Walsh, K. E. Holloway, P. Habdas, and J. R. de Bruyn,
Phys. Rev. Lett. 91, 104301 (2003).

[3] S. J. de Vet and J. R. de Bruyn, Phys. Rev. E 76, 041306
(2007).

[4] D. R. Dowling and T. R. Dowling, Am. J. Phys. 81, 875
(2013).

[5] D.E. GaultandJ. A. Wedekind, Experimental Hypervelocity Im-
pact into Quartz Sand-11: Effects of Gravitational Acceleration
(Pergamon, New York, 1977).

[6] H. Mizutani, S.-I. Kawakami, Y. Takagi, and M. Kumazawa, J.
Geophys. Res. 88, 835 (1983).

[7] K. A. Holsapple, Annu. Rev. Earth Planet. Sci. 21, 333 (1993).

[8] W. K. Hartmann, Icarus 63, 69 (1985).

[9] J. E. Colwell, S. Sturke, M. Cintala et al., Icarus 195, 908
(2008).

[10] J. O. Marston, E.-Q. Li, and S. T. Thoroddsen, J. Fluid Mech.
704, 5 (2012).

[11] F. Pacheco-Vazquez and J. C. Ruiz-Sudrez, Phys. Rev. Lett. 107,
218001 (2011).

[12] K. A. Newhall and D. J. Durian, Phys. Rev. E 68, 060301(R)
(2003).

[13] J. R. de Bruyn and A. M. Walsh, Can. J. Phys. 82, 439 (2004).

[14] J.S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian, Phys.
Rev. Lett. 90, 194301 (2003).

[15] H. Katsuragi and D. J. Durian, Nat. Phys. 3, 420 (2007).

[16] J. D. O’Keefe and T. J. Ahrens, Icarus 62, 328 (1985).

[17] K. R. Housen and K. A. Holsapple, Icarus 211, 856 (2011).

[18] J. C. Ruiz-Suarez, Rep. Prog. Phys. 76, 066601 (2013).

[19] H. Katsuragi, Physics of Soft Impact and Cratering (Springer,
Tokyo, 2016).

[20] D. Van der Meer, Annu. Rev. Fluid Mech. 49, 463 (2017).

[21] S.J. de Vet and J. R. de Bruyn, Granular Matter 14, 661 (2012).

032904-5


https://doi.org/10.1103/PhysRevLett.91.104301
https://doi.org/10.1103/PhysRevLett.91.104301
https://doi.org/10.1103/PhysRevLett.91.104301
https://doi.org/10.1103/PhysRevLett.91.104301
https://doi.org/10.1103/PhysRevE.76.041306
https://doi.org/10.1103/PhysRevE.76.041306
https://doi.org/10.1103/PhysRevE.76.041306
https://doi.org/10.1103/PhysRevE.76.041306
https://doi.org/10.1119/1.4817309
https://doi.org/10.1119/1.4817309
https://doi.org/10.1119/1.4817309
https://doi.org/10.1119/1.4817309
https://doi.org/10.1029/JB088iS02p0A835
https://doi.org/10.1029/JB088iS02p0A835
https://doi.org/10.1029/JB088iS02p0A835
https://doi.org/10.1029/JB088iS02p0A835
https://doi.org/10.1146/annurev.ea.21.050193.002001
https://doi.org/10.1146/annurev.ea.21.050193.002001
https://doi.org/10.1146/annurev.ea.21.050193.002001
https://doi.org/10.1146/annurev.ea.21.050193.002001
https://doi.org/10.1016/0019-1035(85)90021-1
https://doi.org/10.1016/0019-1035(85)90021-1
https://doi.org/10.1016/0019-1035(85)90021-1
https://doi.org/10.1016/0019-1035(85)90021-1
https://doi.org/10.1016/j.icarus.2007.12.019
https://doi.org/10.1016/j.icarus.2007.12.019
https://doi.org/10.1016/j.icarus.2007.12.019
https://doi.org/10.1016/j.icarus.2007.12.019
https://doi.org/10.1017/jfm.2012.141
https://doi.org/10.1017/jfm.2012.141
https://doi.org/10.1017/jfm.2012.141
https://doi.org/10.1017/jfm.2012.141
https://doi.org/10.1103/PhysRevLett.107.218001
https://doi.org/10.1103/PhysRevLett.107.218001
https://doi.org/10.1103/PhysRevLett.107.218001
https://doi.org/10.1103/PhysRevLett.107.218001
https://doi.org/10.1103/PhysRevE.68.060301
https://doi.org/10.1103/PhysRevE.68.060301
https://doi.org/10.1103/PhysRevE.68.060301
https://doi.org/10.1103/PhysRevE.68.060301
https://doi.org/10.1139/p04-025
https://doi.org/10.1139/p04-025
https://doi.org/10.1139/p04-025
https://doi.org/10.1139/p04-025
https://doi.org/10.1103/PhysRevLett.90.194301
https://doi.org/10.1103/PhysRevLett.90.194301
https://doi.org/10.1103/PhysRevLett.90.194301
https://doi.org/10.1103/PhysRevLett.90.194301
https://doi.org/10.1038/nphys583
https://doi.org/10.1038/nphys583
https://doi.org/10.1038/nphys583
https://doi.org/10.1038/nphys583
https://doi.org/10.1016/0019-1035(85)90128-9
https://doi.org/10.1016/0019-1035(85)90128-9
https://doi.org/10.1016/0019-1035(85)90128-9
https://doi.org/10.1016/0019-1035(85)90128-9
https://doi.org/10.1016/j.icarus.2010.09.017
https://doi.org/10.1016/j.icarus.2010.09.017
https://doi.org/10.1016/j.icarus.2010.09.017
https://doi.org/10.1016/j.icarus.2010.09.017
https://doi.org/10.1088/0034-4885/76/6/066601
https://doi.org/10.1088/0034-4885/76/6/066601
https://doi.org/10.1088/0034-4885/76/6/066601
https://doi.org/10.1088/0034-4885/76/6/066601
https://doi.org/10.1146/annurev-fluid-010816-060213
https://doi.org/10.1146/annurev-fluid-010816-060213
https://doi.org/10.1146/annurev-fluid-010816-060213
https://doi.org/10.1146/annurev-fluid-010816-060213
https://doi.org/10.1007/s10035-012-0364-x
https://doi.org/10.1007/s10035-012-0364-x
https://doi.org/10.1007/s10035-012-0364-x
https://doi.org/10.1007/s10035-012-0364-x

F. PACHECO-VAZQUEZ, A. TACUMA, AND J. 0. MARSTON

[22] F. E. Loranca-Ramos, J. L. Carrillo-Estrada, and F. Pacheco-
Viazquez, Phys. Rev. Lett. 115, 028001 (2015).

[23] A. J. Chabai, J. Geophys. Res. 70, 5075 (1965).

[24] L. J. Vortman, J. Geophys. Res. 73, 14 (1968).

[25] R. M. Schmidt and K. R. Housen, Int. J. Impact Eng. 5, 543
(1987).

[26] R. D. Ambrosini, B. M. Luccioni, R. F. Danesi, J. D. Riera, and
M. M. Rocha, Shock Waves 12, 69 (2002).

[27] US Army Engineer Waterways Experiment Station, Technical
Report No. 2-547 (1961).

[28] K. A. Holsapple and R. M. Schmidt, J. Geophys. Res. 85, 7247
(1980).

[29] V. R. Oberbeck, J. Geophys. Res. 76, 5732 (1971).

[30] A. J. Piekutowski, in Proceedings of the 1Ilth Lunar and
Planetary Science Conference (Pergamon, New York, 1980),
pp- 2129-2144.

[31] A.J. Piekutowski, Impact and Explosion Cratering (Pergamon
Press, New York, 1977), pp. 67-102.

PHYSICAL REVIEW E 96, 032904 (2017)

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.96.032904 for videos of explosions at the
surface of three-dimensional and two-dimensional granular
beds.

[33] O. S. Kolkov, A. M. Tikhomirov, and A. F. Shatsukevich, Fiz.
Goren. Vzryv. 3, 569 (1967).

[34] A. Benusiglio, D. Quere, and C. Clanet, J. Fluid Mech. 752, 123
(2014).

[35] M. A. B. Deakin, Int. J. Math Ed. Sci. Tech. 42, 1069
(2011).

[36] T. Antal, P. L. Krapivsky, and S. Redner, Phys. Rev. E 78,
030301(R) (2008).

[37] J. J. Stickel and R. L. Powell, Annu. Rev. Fluid Mech. 37, 129
(2005).

[38] Y. Forterre and O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1
(2008).

[39] P. Umbanhowar and D. I. Goldman, Phys. Rev. E 82, 010301(R)
(2010).

032904-6


https://doi.org/10.1103/PhysRevLett.115.028001
https://doi.org/10.1103/PhysRevLett.115.028001
https://doi.org/10.1103/PhysRevLett.115.028001
https://doi.org/10.1103/PhysRevLett.115.028001
https://doi.org/10.1029/JZ070i020p05075
https://doi.org/10.1029/JZ070i020p05075
https://doi.org/10.1029/JZ070i020p05075
https://doi.org/10.1029/JZ070i020p05075
https://doi.org/10.1029/JB073i014p04621
https://doi.org/10.1029/JB073i014p04621
https://doi.org/10.1029/JB073i014p04621
https://doi.org/10.1029/JB073i014p04621
https://doi.org/10.1016/0734-743X(87)90069-8
https://doi.org/10.1016/0734-743X(87)90069-8
https://doi.org/10.1016/0734-743X(87)90069-8
https://doi.org/10.1016/0734-743X(87)90069-8
https://doi.org/10.1007/s00193-002-0136-3
https://doi.org/10.1007/s00193-002-0136-3
https://doi.org/10.1007/s00193-002-0136-3
https://doi.org/10.1007/s00193-002-0136-3
https://doi.org/10.1029/JB085iB12p07247
https://doi.org/10.1029/JB085iB12p07247
https://doi.org/10.1029/JB085iB12p07247
https://doi.org/10.1029/JB085iB12p07247
https://doi.org/10.1029/JB076i023p05732
https://doi.org/10.1029/JB076i023p05732
https://doi.org/10.1029/JB076i023p05732
https://doi.org/10.1029/JB076i023p05732
http://link.aps.org/supplemental/10.1103/PhysRevE.96.032904
https://doi.org/10.1017/jfm.2014.255
https://doi.org/10.1017/jfm.2014.255
https://doi.org/10.1017/jfm.2014.255
https://doi.org/10.1017/jfm.2014.255
https://doi.org/10.1080/0020739X.2011.562324
https://doi.org/10.1080/0020739X.2011.562324
https://doi.org/10.1080/0020739X.2011.562324
https://doi.org/10.1080/0020739X.2011.562324
https://doi.org/10.1103/PhysRevE.78.030301
https://doi.org/10.1103/PhysRevE.78.030301
https://doi.org/10.1103/PhysRevE.78.030301
https://doi.org/10.1103/PhysRevE.78.030301
https://doi.org/10.1146/annurev.fluid.36.050802.122132
https://doi.org/10.1146/annurev.fluid.36.050802.122132
https://doi.org/10.1146/annurev.fluid.36.050802.122132
https://doi.org/10.1146/annurev.fluid.36.050802.122132
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1103/PhysRevE.82.010301
https://doi.org/10.1103/PhysRevE.82.010301
https://doi.org/10.1103/PhysRevE.82.010301
https://doi.org/10.1103/PhysRevE.82.010301



